
1

APIS ARE THE KEYSTONE OF SUCCESSFUL E-COMMERCE PLATFORMS

API Federation and Management

3

Modern API Integration Architecture for Omnichannel
(“North-South”)

Brand Website Store front Mobile App Device

GraphQL API

Commerce
Backend

Search Customer Profile Custom

REST / OPEN API

4

§ We aim for an API layer as a clearly defined boundary to our platform to be accessed from
various front-ends (Web/AEM, mobile, devices, …) and external applications

§ The APIs that we expose MUST follow common agreed standards

§ Vendor-specific APIs MUST NOT be exposed (outside their own application portfolio), i.e.,
all APIs of commercial-of-the-shelf applications can only be reached through an anti-
corruption-layer/wrapper so that we are more flexible to exchange backend systems but still
can fulfil our API contract

§ APIs MUST NOT break the contract with their clients with a new version

§ All APIs that are exposed to the outside (incl. 1st-party clients) MUST be reviewed and
approved by RAQN API Governance Body

General API Guidelines

5

§ REST-APIs follow the OpenAPI Standard (link)

§ REST-APIs SHOULD follow Microsoft’s Open Source API Guidelines: link

§ GraphQL-APIs follow a federated approach so that all relevant query APIs (e. g. Search,
Products, Recommendations) can be reached through an enterprise graph

§ RAQN Event Hub implements primarily two standards:
§ Cloud Events (link)
§ AsyncAPI (link)

§ Data Elements are English, lowerCamelCase and UTF-8 encoded

§ Multi-tenancy is handled with header variable “X-Site-ID”
i.e. every API request should have the “X-Site-ID” header included. A central API is provided to register and resolve hostnames to site-IDs: GET
/site-id?hostname=frag-team-clean.de

API Standards

https://spec.openapis.org/oas/v3.1.0
https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md
https://cloudevents.io/
https://www.asyncapi.com/

6

REST-API – Maturity – We aim für Level 2
More details: (link, and link)

Level 2 Key-takeaways:
- Use GET only for operations that do

not change state
- To change state, use e.g., POST/PUT
- Use status codes to help

communicate errors
- Use query parameters for paging,

searching, filtering, and querying
- Use HTTP headers to exchange

additional non-payload information
regarding the request itself

https://martinfowler.com/articles/richardsonMaturityModel.html
https://blog.restcase.com/4-maturity-levels-of-rest-api-design/

7

Method Description Is Idempotent
GET Return the current value of an object True

PUT Replace an object, or create a named object, when applicable True

DELETE Delete an object True

POST Create a new object based on the data provided, or submit a command False

HEAD Return metadata of an object for a GET response. Resources that
support the GET method MAY support the HEAD method as well True

PATCH Apply a partial update to an object False

OPTIONS Get information about a request; see below for details. True

REST-API Standards - Methods

8

REST-API Standards

§ Versioning
§ embedded in the path of the request URL, at the end of the service root and should only expose major

versions, e.g., v1
§ minor versions MUST not break the API-contract but e.g., could expose more data

§ URI-paths should follow this pattern:
/<service>/<version>/<list resources>/<id> e.g., /community/v1/articles/

§ Verbs (if necessary) should be expressed as …

9

API Services

§ All APIs are exposed through:
§ Sandbox-environment: lab-api.raqn.io
§ Development-environment (internal): dev-api.raqn.io
§ Test-environment (demo): test-api.raqn.io
§ Production-environment: api.raqn.io

§ Developer portal should be exposed at: developer.raqn.io

10

Authentication and Authorization

§ All clients that access RAQN APIs MUST register with API Management

§ 1st parties MUST use token-based authentication with JWT tokens.
§ JWT token validation will be done centrally by the API Management for inbound traffic
§ Subsequent API calls must carry the JWT-Token in the „Authorization“-header so that in the

future a side-car proxy in the RAQN service meshes can validate it too.

§ Mobile apps and 3rd parties MUST use
§ OpenIDConnect for Authentication
§ OAuth2 for Authorization

11

Login (exceptions are SAP CDC Screen Sets)

1. The request for the user’s authentication is done from the browser to the API Management.
2. API Management will call an Azure function which is already authenticated as a service against

CDC to validate the login by API call.
3. The Azure function connects to CDC and validates the authentication
4. This Azure function creates a new JWT token (TTL 10h), including proper scopes and returns it

via the API Management to the user where it is stored in the browser as cookie (SameSite-
policy).
Tokens should be stored in REDIS cache to later be able to revoke it.

5. The JWT will be included as Authorization Bearer header in all further requests. Meaning, we
don’t use CDC sessions for API calls. CDC is just used for verification of the user’s credentials.

1st Party token-based authentication

12

Backend Service Calls

1. JWT Bearer is sent as Authorization header for any request to the API Gateway
2. API Gateway validates the JWT token (encryption/signature)
3. API Gateway validates the scopes (optional)
4. API Gateway trims the scopes to the only necessary for the called service
5. API Gateway forwards the request to the Backend Service including the trimmed JWT
6. Backend Service validates the scopes and executes request based on the User-Id & scopes
7. Backend Service might call another backend service with the same JWT token it received

(service mesh)
8. Backend Service Return of the response via API Management

Token-revocation
§ User should be enabled to revoke token. This should be handled from a UX perspective as a

“user log out” (later: w/ “ … from all devices” a la Netflix) à submitted token are set invalid in
REDIS cache

1st Party token-based authentication

13

1st Party token-based authentication

LOGIN
Not implemented yet
due to usage of „SAP

CDC screen sets“

CX Works | SAP Customer Data Cloud: Client Side vs. Server Side Integrations

BACKEND
SERVICE CALLS

https://www.sap.com/cxworks/article/516942419/sap_customer_data_cloud_client_side_vs_server_side_integrations

